
IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 1

URL Mining Using Web Crawler in Online Based Content Retrieval

M.VijayaLakshmi1, Mr.P.Senthil Kumar2

1II M.E Student, Department of Computer Science and Engineering, S.Veerasamy Chettiar College of Engineering and

Technology, Puliangudi-627 855

2Assistant Professor, Department of Computer Science and Engineering, S.Veerasamy Chettiar College of Engineering and

Technology, Puliangudi-627 855

Abstract
A supervised web scale forum crawler is a crawling process of

forum crawler under supervision(Focus). The main aim of Focus

is to crawl related content from the web with minimal overhead

and also detect the duplicate links.Forums can contain different

layouts or styles and are powered by a variety of forum software

packages. Focus take six path from entry page to thread page. It

helps the frequent thread updating in forum. It's main purpose is

reduce the web forum crawling problem to a URL-type

recognition problem.The Focus consists of two parts learning

part and online crawling part.The learning part is automatically

constructed URL training sets and then online crawling part to

crawl all threads efficiently. The accurate and effective regular

expression patterns of implicit navigation paths from

automatically created training sets using aggregated results from

weak page type classifiers.An effective forum entry URL

discovery method to ensure the high coverage. The forum

crawler should start crawling forum pages from forum entry

URLs to thread URLs. The implicit EIT-like path also apply to

other User Generated Content (UGC).

Keywords: Component, formatting, style, styling, insert.

1. Introduction

Data mining (the analysis step of the "Knowledge

Discovery in Databases" process, or KDD),an

interdisciplinary subfield of computer science, is the

computational process of discovering patterns in large data

sets involving methods at the intersection of artificial

intelligence, machine learning, statistics, and systems. The

overall goal of the data mining process is to extract

information from a data set and transform it into an

understandable structure for further use. Aside from the

raw analysis step, it involves database and data

management aspects data model and inference

considerations ,interestingness metrics, post-processing of

discovered structures, visualization, and online

updating.The term is a buzzword, and is frequently

misused to mean any form of large-scale data or

information processing (collection, extraction,

warehousing, analysis, and statistics) but is also

generalized to any kind of computer decision support

system, including artificial intelligence, machine learning,

and business intelligence. The actual data mining task is

the automatic or semi-automatic analysis of large quantities

of data to extract previously unknown interesting patterns

such as groups of data records (cluster analysis), unusual

records (anomaly detection) and dependencies (association

rule mining). This usually involves using database

techniques such as spatial indices. These patterns can then

be seen as a kind of summary of the input data, and may be

used in further analysis or, for example, in machine

learning and predictive analytics. For example, the data

mining step might identify multiple groups in the data,

which can then be used to obtain more accurate prediction

results by a decision support system. Neither the data

collection and data preparation, nor result interpretation

and reporting are part of the data mining step, but do

belong to the overall KDD process as additional steps.

 The Knowledge Discovery in Databases (KDD) is

commonly defined with the following stages. (i)Selection,

(ii) Pre-processing, (iii) Transformation, (iv) Data Mining,

(v) Interpretation/Evaluation. It exists, however, in many

variations on this theme, such as the Cross Industry

Standard Process for Data Mining (CRISP-DM) which

defines five phases: Business Understanding, Data

Understanding, Data Preparation, Modeling, and

Evaluation.

 Before data mining algorithms can be used, a target

data set must be assembled. As data mining can only

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 2

uncover patterns actually present in the data, the target data

set must be large enough to contain these patterns while

remaining concise enough to be mined within an

acceptable time limit. A common source for data is a data

mart or data warehouse. Pre-processing is essential to

analyze the multivariate data sets before data mining. The

target set is then cleaned. Data cleaning removes the

observations containing noise and those with missing data.

Anomaly detection (Outlier/change/deviation

detection) – The identification of unusual data records, that

might be interesting or data errors that require further

investigation.

Association rule learning (Dependency modeling)

Searches for relationships between variables. For example

a supermarket might gather data on customer purchasing

habits. Using association rule learning, the supermarket

can determine which products are frequently bought

together and use this information for marketing purposes.

This is sometimes referred to as market basket analysis.

 Clustering – is the task of discovering groups and

structures in the data that are in some way or another

"similar", without using known structures in the data.

 Classification – is the task of generalizing known

structure to apply to new data. For example, an e-mail

program might attempt to classify an e-mail as "legitimate"

or as "spam".

 Regression – Attempts to find a function which

models the data with the least error.

 Summarization – providing a more compact

representation of the data set, including visualization and

report generation.

There have been some efforts to define standards for

the data mining process, for example the 1999 European

Cross Industry Standard Process for Data Mining (CRISP-

DM 1.0) and the 2004 Java Data Mining standard (JDM

1.0). Development on successors to these processes

(CRISP-DM 2.0 and JDM 2.0) was active in 2006, but has

stalled since. JDM 2.0 was withdrawn without reaching a

final draft

Fig 1 Architecture of focused Crawling

for use in predictive analytics – the key standard is the

Predictive Model Markup Language (PMML), which is an

XML-based language developed by the Data Mining

Group (DMG) and supported as exchange format by many

data mining applications. As the name suggests, it only

covers prediction models, a particular data mining task of

high importance to business applications. However,

extensions to cover (for example) subspace clustering have

been proposed independently of the DMG. A Web crawler

is an Internet boot that systematically browses the World

Wide Web, typically for the purpose of Web indexing. A

Web crawler may also be called a Web spider, an ant, an

automatic indexer, or (in the FOAF software context) a

Web scutter.

 Web search engines and some other sites use Web

crawling or spidering software to update their web content

or indexes of others sites' web content. Web crawlers can

copy all the pages they visit for later processing by a

search engine that indexes the downloaded pages so that

users can search them much more quickly. Crawlers can

validate hyperlinks and HTML code. They can also be

used for web scraping see also data-driven programming.

A Web crawler starts with a list of URLs to visit,

called the seeds. As the crawler visits these URLs, it

identifies all the hyperlinks in the page and adds them to

the list of URLs to visit, called the crawl frontier. URLs

from the frontier are recursively visited according to a set

of policies. The large volume implies that the crawler can

only download a limited number of the Web pages within a

given time, so it needs to prioritize its downloads. The high

rate of change implies that the pages might have already

been updated or even deleted.

 The number of possible crawlable URLs being

generated by server-side software has also made it difficult

for web crawlers to avoid retrieving duplicate content.

Endless combinations of HTTP GET (URL-based)

parameters exist, of which only a small selection will

actually return unique content. For example, a simple

online photo gallery may offer three options to users, as

specified through HTTP GET parameters in the URL. If

there exist four ways to sort images, three choices of

thumbnail size, two file formats, and an option to disable

user-provided content, then the same set of content can be

accessed with 48 different URLs, all of which may be

linked on the site. This mathematical combination creates a

problem for crawlers, as they must sort through endless

combinations of relatively minor scripted changes in order

to retrieve unique content.

URL normalization Crawlers usually performs some

type of URL normalization in order to avoid crawling the

same resource more than once. The term URL

normalization, also called URL canonicalization, refers to

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 3

the process of modifying and standardizing a URL in a

consistent manner. There are several types of

normalization that may be performed including conversion

of URLs to lowercase, removal of "." and ".” segments,

and adding trailing slashes to the non-empty path

component.

Some crawlers intend to download as many resources

as possible from a particular web site. So path-ascending

crawler was introduced that would ascend to every path in

each URL that it intends to crawl. For example, when

given a seed URL of

http://llama.org/hamster/monkey/page.html, it will attempt

to crawl /hamster/monkey/, /hamster/, and /. Cothey found

that a path-ascending crawler was very effective in finding

isolated resources, or resources for which no inbound link

would have been found in regular crawling.

1.1 Focused Crawling

 The importance of a page for a crawler can also

be expressed as a function of the similarity of a page to a

given query. Web crawlers that attempt to download pages

that are similar to each other are called focused crawler or

topical crawlers. The concepts of topical and focused

crawling were first introduced by Menczer and by

Chakrabarti et al. The main problem in focused crawling is

that in the context of a Web crawler, we would like to be

able to predict the similarity of the text of a given page to

the query before actually downloading the page. The

architecture of focused crawling is shown in fig 1. A

possible predictor is the anchor text of links; this was the

approach taken by Pinkerton in the first web crawler of the

early days of the Web. Diligenti et al. propose using the

complete content of the pages already visited to infer the

similarity between the driving query and the pages that

have not been visited yet. The performance of a focused

crawling depends mostly on the richness of links in the

specific topic being searched, and a focused crawling

usually relies on a general Web search engine for

providing starting points.

A crawler must not only have a good crawling

strategy, as noted in the previous sections, but it should

also have a highly optimized architecture. While it is fairly

easy to build a slow crawler that downloads a few pages

per second for a short period of time, building a high-

performance system that can download hundreds of

millions of pages over several weeks presents a number of

challenges in system design, I/O and network efficiency,

and robustness and manageability. Web crawlers are a

central part of search engines, and details on their

algorithms and architecture are kept as business secrets.

When crawler designs are published, there is often an

important lack of detail that prevents others from

reproducing the work. There are also emerging concerns

about "search engine spamming", which prevent major

search engines from publishing their ranking algorithms.

Duplicate documents in the World Wide Web adversely

affect crawling, indexing and relevance, which are the core

building blocks of web search. To present a set of

techniques to mine rules from URLs and utilize these

learnt rules for de-duplication using just URL strings

without fetching the content explicitly. The crawl logs

utilizing clusters of similar pages are extracted from

specific rules from URLs belonging to each cluster.

Preserving each mined rules for de-duplication is not

efficient due to the large number of specific rules. A

machine learning technique to generalize the set of rules,

which reduces the resource foot-print to be usable at web

scale is used. The rule extraction techniques are robust

against web-site specific URL conventions.

To send in hypertext, Google is designed to crawl and

index the Web efficiently and produce much more

satisfying search results than existing systems. The

prototype with a full text and hyperlink database of several

pages is available. A search engine is a challenging task.

Search engines index tens to hundreds of millions of Web

pages involving a comparable number of distinct terms.

They answer tens of millions of queries every day. Despite

the importance of large-scale search engines on the Web,

very little academic research has been done on them.

Furthermore, due to rapid advance in technology and Web

proliferation, creating a Web search engine today is very

different from three years ago.It provides an in-depth

description of our large-scale Web search engine - the first

such detailed public description we know of to date.

Apart from the problems involved with using the additional

information present in hypertext to produce better search

results. To address how to build a practical large-scale

system which can exploit the additional information is

present in hypertext.

2. Proposed System

Generic crawlers process each page individually and

ignore the relationships between such pages. These

relationships should be preserved while crawling to

facilitate downstream tasks such as page wrapping and

content indexing. INTERNET forums (also called web

forums) are important services where users can request and

exchange information with others. Generic crawlers, which

adopt a breadth-first traversal strategy, are usually

ineffective and inefficient for forum crawling. This is

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 4

mainly due to two non crawler friendly characteristics of

forums duplicate links and uninformative pages and page-

flipping links. A forum typically has many duplicate links

that point to a common page but with different URLs. A

generic crawler that blindly follows these links will crawl

many duplicate pages, making it inefficient. A forum also

has many uninformative pages such as login control to

protect user privacy or forum software specific FAQs.

Web crawlers typically identify themselves to a Web

server by using the User-agent field of an HTTP request.

Web site administrators typically examine their Web

servers' log and use the user agent field to determine which

crawlers have visited the web server and how often. The

user agent field may include a URL where the Web site

administrator may find out more information about the

crawler. Examining Web server log is tedious task

therefore some administrators use tools such as Crawl

Track or SEO Crawlytics to identify, track and verify Web

crawlers. Spam bots and other malicious Web crawlers are

unlikely to place identifying information in the user agent

field, or they may mask their identity as a browser or other

well-known crawler.

 It is important for Web crawlers to identify

themselves so that Web site administrators can contact the

owner if needed. In some cases, crawlers may be

accidentally trapped in a crawler trap or they may be

overloading a Web server with requests, and the owner

needs to stop the crawler.

Identification is also useful for administrators that are

interested in knowing when they may expect their Web

pages to be indexed by a particular search engine.

2.1 Crawling the Deep Web

 A vast amount of web pages lie in the deep or

invisible web. These pages are typically only accessible by

submitting queries to a database, and regular crawlers are

unable to find these pages if there are no links that point to

them. Google's Sitemaps protocol are intended to allow

discovery of these deep-Web resources.

 Deep web crawling also multiplies the number of

web links to be crawled. Some crawlers only take some of

the -shaped URLs. In some cases, such as

the Google bot, Web crawling is done on all text contained

inside the hypertext content, tags, or text.

 Strategic approaches may be taken to target deep-

Web content. With a technique called screen scraping,

specialized software may be customized to automatically

and repeatedly query a given Web form with the intention

of aggregating the resulting data. Such software can be

used to span multiple Web forms across multiple Websites.

Data extracted from the results of one Web form

submission can be taken and applied as input to another

Web form thus establishing continuity across the Deep

Web in a way not possible with traditional web crawlers.

Fig 2 Architecture of the Proposed System

Forum Crawler Under Supervision (Focus), a supervised

web scale forum crawler, to address these challenges. The

goal of Focus is to crawl relevant content that is user posts,

from forums with minimal overhead. Forums exist in many

different layouts or styles and are powered by a variety of

forum software packages, but they always have implicit

navigation paths to lead users from entry pages to thread

pages. The challenge of forum crawling is then reduced to

a URL type recognition problem. To learn URL patterns,

Index-Thread-page-Flipping (ITF) regexes recognizing

these three types of URLs from as few as five annotated

forum packages and apply them to a large set of 160

unseen forums packages. Note that we specifically refer to

“forum package” rather than “forum site. The proposed

system can be divided into the following modules.

i) Internal URL

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 5

ii) In order Crawled

iii) In order of Size

iv) External URL

v) Bad URL

2.1.1In Order Crawled
 The pages were found within the site. The size is

calculated by getting value of the Length of the text of the

response text. This is the order in which they were crawled.

This module contains the page size, view state size and list

of internal URLs.

2.1.2 In Order of Size

The pages are found within the site. The size is

calculated by getting value of the Length of the text of the

response text. This is the order in terms of total page size.

This module also contains the page size, view state size

and list of internal URLs.

2.1.3 External URL

The pages are link to the outside of the site, a

hyperlink on a Web page that points to the web page on a

different Web site. On a blog, a link is typically considered

external if it points to another blog, even though both blogs

are hosted on the same blog site. It will search the link in

different pages in a different web site.

Bad URL

The crawler to find the URL in the overall site and to

display all corresponding equaling lists in a web site. Non

proper links will be displayed in this Bad URL list. This

contains the irresponsive links and proper connectionless

links. This links will not be used in our web sites.

Algorithm

Index Url Thread Url Detection Algorithm

Input: sp:an entry page or index page

Output: it_group:a group of index/thread URLs

1: let it_group be ;data

2: url_groups=Collect URL groups by aligning

HTML DOM tree of sp;

3: foreach ug in url_groups do

4: ug.anchor_len=Total anchor text length in ug;

5: end foreach

6: it_group=arg max(ug.anchor_len) in url_groups;

7: it_group.DstPageType=Majority page type of the

destination pages of URLs in ug;

8: if it_group.DstPageType is INDEX_PAGE

9: it_group.UrlType=INDEX_URL;

10: else if it_group.DstPageType is THREAD_PAGE

11: it_group:UrlType=THREAD_URL;

12: else

13: it_group

14: end if

15: return it_group;

Page-Flipping URL Detection Algorithm

Input: sp:an index page or thread page

Output: pf_group:a group of page-flipping URLs

1: let pf_group be ɸ

2: url_groups=Collect URL groups aligning HTML

DOM tree of sp;

3: foreach ug in url_groups do

4: if the anchor texts of ug are digit strings

5: pages=Download(URLs in ug);

6: if pages have the similar layout to sp and ug

appears at same location of pages as in sp

7: pf_group=ug;

8: break;

9: end if

10: end if

11:end foreach

12:if pf_group is ɸ

13: foreach url in outgoing URLs in sp

14: p=Download(url);

15: pf_url=Extract URL in p at the same location as

url in sp;

16: if pf_url exists and pf_url.anchor= =url.anchor

and pf_url!=url.UrlString

17: Add url and cand_url into pf_group;

18: break;

19: end if

20: end foreach

21: end if

22: pf_group.UrlType=PAGE_FLIPPING_URL;

23: return pf_group;

Entry URLDiscovery Algorithm

Input: url:a URL pointing to a page from a forum

Output: entry_url:Entry URL of this forum

1: b_url=GetNaiveEntryUrl(url);

2: p=Download(url);

3: urls=Extract outgoing URLs in p that start with

b_url;

4: samp_urls=Randomly sample a few URLs from

urls;

5: Add the host of url into samp_urls;

6: foreach u in samp_urls do

7: p=Download(u);

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 6

8: urls= urls {outgoing URLs in p starting with

b_url};

9: end foreach

10: let entry_url be b_url,index_urls be ɸ count be 0;

11: foreach u in urls do

12: if u is in index_urls continue;ϕ

13: p=Download(u);

14: i_urls=Detect index URLs in p;

15: index_urls=index_urls i_urls;

16: if count<|i_urls|

17: count=|i_urls|;

18: entry_url=u;

19: end if

20: end foreach

21: return entry_url;

3. Experimental Results

To determine the effectiveness of the proposed system,

we selected 100 different forum software packages from

different forums. For each package, there was a forum

powered by it. Therefore, there were 100 forums powered

by 100 different software packages. Among them, 25

forums were selected for training set and the remaining 75

were kept for testing. These 100 packages cover a wide

group of forums.

3.1 Evaluation of FoCUS Models:

 To build page classifiers, we manually selected

five index pages, five thread pages, and five other pages

from each of the 40 forums and extracted the features. For

testing, we manually selected 10 index pages, 10 thread

pages, and 10 other pages from each of the 160 forums.

This is called 10-Page/60 test set. We then ran

Index/Thread URL Detection module. We computed the

results at page level not at individual URL level since we

applied a majority voting procedure. To further check how

many annotated pages FoCUS needs to achieve good

performance. We conducted similar experiments and

applied cross validation. We find that our page classifiers

achieved over 96 percent recall and precision at all cases

with tight standard deviation. It is particularly encouraging

to see that FoCUS can achieve over 98 percent precision

and recall in index/thread URL detection with only as few

as five annotated forums.

3.2 Evaluation of Page-Flipping URL Detection

To test page-flipping URL detection, we applied the

module “Page-Flipping URL Training Set” on the 10-

Page/160 test set and manually checked whether it found

the correct URLs. The method achieved 99 percent

precision and 95 percent recall.

Fig 3 Covering comparison between starting from entry URL and non

entry URL

3.3Evaluation of Entry URL Discovery

All prior works in forum crawling assume that an entry

URL is given. However, finding forum entry URL is not

trivial. To demonstrate this, we compare our entry URL

discovery method with a heuristic baseline. For each forum

in the test set, we randomly sampled a page and fed it to

this module. Then, we manually checked if the output was

indeed its entry page. In order to see whether FoCUS and

the baseline were robust, we repeated this procedure 10

times with different sample pages. The baseline had 76

percent precision and recall. On the contrary, FoCUS

achieved 99 percent precision and 99 percent recall. The

low standard deviation also indicates that it is not sensitive

to sample pages.

4. Conclusions

The FoCUS, a supervised forum crawler. It reduced the

forum crawling problem to a URL type recognition

problem and showed how to leverage implicit navigation

paths of forums, i.e., EIT path, and designed methods to

learn ITF regexes explicitly. Experimental results on 160

forum sites each powered by a different forum software

package confirm that Focus can effectively learn

knowledge of EIT path from as few as five annotated

forums. These learned regexes can be applied directly in

online crawling. Training and testing on the basis of the

forum package makes our experiments manageable and our

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 7

results applicable to many forum sites. Focus can start

from any page of a forum. The results on nine unseen

forums. Results on 160 forums show that Focus can apply

the learned knowledge to a large set of unseen forums and

still achieve a very good performance. Though the method

introduced in this paper is targeted at forum crawling, the

implicit EIT-like path also applies to other sites, such as

community Q&A sites and blog sites. In future, we like to

discover new threads and refresh crawled threads in a

timely manner. The initial results of applying a Focus-like

crawler to other social media are very promising. We

would like to conduct more comprehensive experiments to

further verify our approach and improve upon it.

References

[1] Anirban Dasgupta Ravi Kumar Amit Sasturkar“De-duping

URLs via Rewrite Rules”2008.

[2] A. Agarwal, H. S. Koppula, K. P. Leela, K. P. Chitrapura,S.

Garg, P. K. GM, C. Haty, A. Roy, and A. Sasturkar. Url

normalization for de-duplication of web pages 1987–

1990,November 2009.

[3] S. Brin and L. Page,“The Anatomy of a Large-Scale

Hypertextual Web Search Engine.”vol. 30,nos. 1-7, pp. 107-

117, 1998.

[4] R. Baumgartner, S. Flesca, and G. Gottlob.Declarative

information extraction, Web crawling, and recursive

wrapping with Lixto.2173, 2001.

[5] A. Z. Broder, M. Najork, and J. L. Wiener. E_cient URL

caching for World Wide Web crawling. In International

conference on World Wide Web, 2003.

[6] Z. Bar-Yossef, I. Keidar, and U. Schonfeld. Do not crawl in

the DUST: different URLs with similar text. In Proc. 16th

WWW, pages 111−120, Banff, Alberta, Canada, May 2007.

[7] S. Chaudhuri, V. Ganti, and R. Motwani. Robust idenfication

of fuzzy duplicates. In Proc. 21st ICDE, pages 865–876,

2005.

[8] D. Fetterly, M. Manasse, and M. Najork. Detecting Phrase-

Level Duplication on the World Wide Web. To appear in

28th Annual International ACM SIGIR Conference (Aug.

2005).

[9] C. Gao, L. Wang, C.-Y. Lin, and Y.-I. Song,“Finding

Question-Answer Pairs from Online Forums,”pp. 467-474,

2008.

[10]N. Glance, M. Hurst, K. Nigam, M. Siegler, R. Stockton, and

T. Tomokiyo, “Deriving Marketing Intelligence from Online

Discussion,”,pp. 419-428, 2005.

[11]H. Garcia-Molina and L. Page. Efficient crawling through

URL ordering. in: Proc. of’ the 7th Intermitiontrl World

Wide Web Conference April l5- IS, 1998.

[12]T. H. Haveliwala, A. Gionis, D. Klein, and P. Indyk.

Evaluating strategies for similarity search on the Web.In Proc.

11th International World Wide WebConference, pages

443,442, May 2002.

[13]M. Henzinger,“Finding Near-Duplicate Web Pages: A

Large-Scale Evaluation of Algorithms,”,pp. 284-291,2006.

[14]H.S. Koppula, K.P. Leela, A. Agarwal, K.P. Chitrapura, S.

Garg, and A. Sasturkar,“Learning URL Patterns for Webpage

De-Duplication,”Proc. Third ACM Conf. Web Search and

Data Mining,pp. 381-390, 2010.

[15]J. Myllymaki. Effective web data extraction with standard

XML technologies. In Proc. WWWW10,pages 689–696,

May 2001.

[16]Pantel, Patrick., Eric Crestan, Arkady Borkovsky, Ana-Maria

Popescu, Vishunu Vyas. 2009. Web-Scale Distributional

Similarity and Entity Set Expansion.In Proceedings of.

EMNLP, 2009.

[17]U. Schonfeld and N. Shivakumar, “Sitemaps: Above and

Beyond the Crawl of Duty,”,pp. 991-1000, 2009.

[18] R. Song, H. Liu, J.-R. Wen, W.-Y. Ma. Learning

important models for Web page blocks based on layout and

content analysis. ACM SIGKDD Explorations

Newsletter,6(2):14−23, Dec. 2004.

[19]Y. Wang, J.-M. Yang, W. Lai, R. Cai, L. Zhang, and W.-Y.

Ma,“Exploring Traversal Strategy for Web Forum

Crawling,”,pp. 459-466, 2008.

